Thread: Sum of squares
View Single Post
 
Reply
Posted 2021-04-21, 10:00 AM in reply to WetWired's post starting "Interesting. Besides stacking..."
WetWired said: [Goto]
Interesting. Besides stacking cannonballs (and wouldn’t they stack better in triangle bases?), have you encountered many real world uses for the sum of the first n squares?

Great question! I think the closest thing to another physical application of 1^2 + 2^2 + ... + n^2 that I've come across is in finding the volume of a pyramid with a rectangular base without integration (kind of).

If you approximate the volume of the pyramid with the volume of a suitable step pyramid, then the above sum shows up naturally when you sum of the volumes of the n (cuboidal) steps. The limiting volume in n is then the volume of the original pyramid.

Sure, you could argue that it's just using the Riemann sum definition of Riemann integrals in a special case, but it's the sort of thing that I wouldn't be surprised if Archimedes did long before integrals were formalized.

Asamin said: [Goto]
That was super interesting I really enjoyed the way you presented that. I love when sums can collapse down to a simple equation, it really is beautiful to watch.

Thanks! Yes, it's amazing when you start with a (more or less) mest messy formula or idea, and it ends up being really simple in the end. In some sense, I think it happens more often than it "should" when you deal with messy systems in physics, for example.

As a concrete example: Interactions between electric point charges (e.g. electrons) can be approximated in various ways with the Legendre polynomials. The n'th of these polynomials have a number of different series and contour integral representations that don't look particularly nice.

There is one very nice representation of the n'th such polynomial, though: Take the polynomial x^2 - 1, raise it to the n'th power, then take the n'th derivative of the result (and multiply it by a simple constant). Pretty easy to remember. It's also a bit odd in that we don't encounter derivatives of an order higher than 2 (or maybe 3) very often IRL.
"Stephen Wolfram is the creator of Mathematica and is widely regarded as the most important innovator in scientific and technical computing today." - Stephen Wolfram

Last edited by Chruser; 2021-04-21 at 10:08 AM.
Old
Profile PM WWW Search
Chruser never puts off to tomorrow what can be done the day after tomorrowChruser never puts off to tomorrow what can be done the day after tomorrowChruser never puts off to tomorrow what can be done the day after tomorrowChruser never puts off to tomorrow what can be done the day after tomorrowChruser never puts off to tomorrow what can be done the day after tomorrow
 
 
Chruser